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ADVAIqCED TURBINE DISK DESIGNS TO INCREASE

RELIABILITY OF AIRCRAFT ENGINES

by Albert Kaufm_n_

ABSTRACT

Results _- analytical studies to improve the low cycle fatigue lives

and reliability of turbine disks in high-performance gas turbine engines

are presented. Advanced disk concepts were evaluated for the first-stage

high pressure turbines of the CF6-50 and JTgD-17 engines. The advanced

disk designs are compared to the existing disks on the bases of cycles to

crack initiation and over, peed capability for initially unflawed disks,

crack propagation cycles to failure for initially flawed disks, and avail-

a_le kinetic energy of disk burst fragments.

INTRODUCTION

In this paper, some advanced disk concept, are analytically evalu-

ated as to their potential for improving low cycz_ fatigue life and _.i-

ability of aircraft gas turbine d'isks. A disk burst is usually the most

catastrophic failure possible in an aircraft engine. Statistics compiled

by the Naval Air Propulsion Test Center on engine failures in U,S. con_ner-

cial aviation 1'2 show that of approximately 8000 engines in service,

*NASA Lewis Research Center, Cleveland, Ohio 44135.

iDeLucia, R. A., and Mangano, G. J., "Rot_ r Burs= Protection Program:

Statistics on Aircraft Gas Turbine Engi%e Rotor Failures that Occurred in

U_S. Commercial Aviation During 1972," Naval Air Propulsion Test Center

Report NAPTC-PE-40, NASA CR-136900, Mar. 1974.

2Mangano, G. J., and DeLucia, R. A., "Rotor Burs= Protection Program:

Statistics on Aircraft Gas T,irbine Engine Rotor Failures that Occurred in

U.S. Commercial Aviation During 1973," ASME Paper no. 75-GT-12.
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there were three turbine, two compressor, and three fan disk failures in

1972 and two turbine and fou_ compressor disk failures in 1973; all of

these failures, with the exception of one compressor disk failure, re-

sulted in fragments piercingand escaping the engine casing. As the

trend toward higher blade tip speeds and turbine inlet temperatures con-

tinues for military and commercial gas turbine engines, it is becoming

more difficult to design reliable turbine disks satisfying both the life

and performance requirements of the engines.

A possible solution to this problem which has been investigated 3'4

is to protect the passengers and critical parts of the aircraft such as

fuel lines from the effects of a disk burst by containing the damage

within the engine. However, the containment devices required to afford

adequate protection would impose a severe weight and, therefore, perform-

ance penalty on the engine.

The objective of this study was to increase disk reliability by

utilizing advanced structural and fabrication concepts to improve low

clcle fatigue life, increase crack propagation resistance, and reduce the

3Ma_gano, G. J., "Rotor Burst'Protection Program. Phases VI and VII:

Exploratory Experimentation to Provide Data for the Design of Rotor Burst

Fragment ConLainment Rings," Naval Air Propulsion Test Center Report

D

NAPTC-AED'1968, AD-744950, Mar. 1972.

_egh_ayanj R. P., Leech, J. W., and Wi_mer, E. A._ "Experimental and

Data Analysis Techniques for Deducing Colllslon-lnduced For_es from Photo -

graphic Histories of Engine Rotor Fragment Impact/Interaction with a Con-

tainment Ring," Mass. Inst. of Tcch. Report ASRL-TR-154-5, NASA CR-134548,

Oct. 1973,
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fragment energies that would be generated in the event of a disk failure.

Under contract to NASA, the General Electric Company and Pratt & Whitney

Aircraft evaluated a number of disk concepts and designed new disks as

potential replacements for the existing first stage, high pressure tur-

bine disks of the CF6-50 and JTgD-17 turbofan engines, respectively. The

approach used in the CF6-50 disk program was to increase fatigue life and

reduce fragment energy by utilizing a redundant construction at the cost

of extra disk weight. In the JT8D-17 disk program the emphasis was on

improving the cyclic life without providing redundancy or increasing the

disk weight. The cycles to crack initiation and the overspeed cspability

for initially unflawed disks, the cycles required to propagate initial

flaws to failure, and the available kinetic energy of disk burst frag-

ments were compared for the advanced disk designs and the existing disks

using both conventional and advanced materials.

ADVANCED DISK CONCEPTS

CF6-50 Designs

The existing first stage turbine disk (hencefortn called the "stand-

ard disk") and the candidate disk designs considered as potential replace-

ments are illustrated in Fig. i. The standard dlsk (Fig. l(a)) is machined

from an integral forging of Inconel 718 alloy. Cooling air is brought

from the compressor through the disk bore, _,,mped up radially t_rough a

liner between the stage 1 and 2 disks, and then channeled around the bolt

holes to the disk rim and into the blades through holes in the blade dove-

tails. Local bosses provide reJ _forcement around the bolt holes to in-

crease the low cycle fatigue lives at the hole rims. The bore-entry disk

(Fig. l(b)) is a split disk with the two disk halves connected by inte-

"' -......................... ,f'7
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gral radial webs foY channeling coolant up the center of the disk from

the bore to the blade_; this improves the _ "Ing effectiveness and mini-

mizes axial thermal gradients. Another attractive feature of this con-

cept is the increased resistance to propagation of cracks or flaws in the

axial direction. It is envisaged that the bore-entry disk would be fab-

ricated from an integral forging using electrochem/cal machining to pro-

duce the cavities between the disk halves and the radial webs.

The composite disk (Fig. ice)) utilizes high--streagth filament or

wire hoops to provide most of the load-carrying ability of the disk ex-

cept at the blade attachments. The hoops would have to be under an inl-

tial pretension in order to assure that the loading was properly dis-

tributed among the filaments; this could be accomplished by filament

winding techniques, by interference fitting the hoops on the disk halves

or by selecting a combination of fibrous and matrix materials with dif-

ferential thermal exparsions which woul.d apply the desired hoop preten-

sion under engine o?arating conditions. The main attractions of this

concept are a hlgh strength-to-weight ratio and a high degree of load-

carrying redundancy.

The laminated and link disks (Figs. l(d) and (e)_ are oriented

toward lusuring load-carrying redundancy, isolation of propagating cracks,

and generation of small burst fragments rather than improving design life.

The two concepts are basically similar except that ring-L>pe laminates

arc bolted together in on - case and layers of llnk segments are pinned

together in the other case. Cost reductions over forged and machined

disks could be achieved b" fabricating these dJ_ks using sheet metal

stamping and die-punching techniques.
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T_e multi-bore disk (Fig. l(f)) separates the highly stressed bore

region into a number of circumferential ribs in order to prevent a crack

or flaw at the bore from propagating in the axial direction. I', order to

accommodate the _paces betwe_ the ribs, the thickness of the disk at the

bore has to be increased substantially over that of the standard disk.

The multi-disk concept (Fig. l(g)) is composed of three or more disks

bolted together and designed so that if one disk fails, the others can

temporarily carry the blade loads. Fig. l(g) illustrates a four-member

multi-disk design. Each member can be shaped for a more efficient utili-

zation of material than is possible with a disk fabricated from sheet

metal laminates. As in the bore entry disk, cooling air can be brought

through the bore and pumped _p -adially between disk members to the blade

attachments.

The spline disk (Fig. l(h)) consists of two disk halves which ar_

splined together and each designed to temporarily carry the tangential

load of the other in case of failure. In order to counter the tendency

of each disk half to straighten out due to lack of symmetry about the

axis, the splines would be radially interlocked by means of diamond-

shaL,ed rods. The mechanical coupling of the d sk halves prevents a

crack from propagating from one disk to the other and tends to contain

failed disk segments within the splines of the undamaged disk.

All the disk concepts involving forgings would be fabricated from

Pane 95 and all those involving sheet metal members would be m_de from

Rene 41.

JT8D-17 Designs

Fig. 2(a) shows the existing or "standard" first stagr turbine disk.
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This disk is machined from a Waspaloy forging. Cooling air is bled from

the combustion liner and discharged at high _,elocity through nozzles

toward the disk rim on the front side of the disk. Angled holes at the

disk rim channel the coolant to the blades; these holes result in ellip-

tical exit openings with high stress concentrations which are the limiL-

ing low-cycle fatigue failure locations in the standard disk.

A spllt-bonded disk concept (h_. :eforth called the "design disk" for

tile JTgD-17 engine) was select_:d as a possible replacement for the stand-

ard disk. In some respects, the split-boI_._d disk shown in Fig. 2(b) is

similar to the bore entry disk (Fig. l(b)) considered for the CF6-50

engin, , As _ the latter _ase, c._ling air would be introduced at the

bore, pumped up radially between disk ha].ves through channels fonned by

radial webs, and supplied =o each blade through radially oriented exit

holes at the disk rim. Instead of having an integral disk as in the bore-

entry design, tLle two halves of the bonded disk would be fabricated from

separate Astroloy forgings which would _hen be dlffusion-brazed together

at the center surfaces of the radial webs using a braze alloy of similar

composition to Astroloy with the addition of a melting iolnt depressant.

Do_etaii broaching and final machining operations would be performed on

the bonded di_k assembly.

DISK ANALYSIS

Design Conditions

Design properties of the disk materials for the candidate disk con-

cept_ are shown in Table I. The simpl_fied flight cycles used for the

m qlyses of the CF6-50 and JTgD-17 disks are shown in Figs. 3 and 4, re-

spectively, in terms of inlet Mach number, altitude, turbine inlet tem-
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perature and engine speed versus flight time.

Crack Initiation

Transient temperatures were computed throughout the design and stand-

ard disks from three-dimenslonal heat transfer computer programs. Radial,

tangential, and axial stresses were calculated from three-dimensional

finite element computer programs. Detailed stress analyses were also per-

formed Zor the disk dovetail attachments to the blades. The number of

cycles required to initiate cracks of 0.076 to 0,082 cm (0.030 to 0.032 in.)

length at critical locations was determined from the results of tb_ ther-

mal and stress analyses of unflawed 1'_ks and fr¢ z mechanical stress or

strain cycling data obtained in tests of laboratory specimens.

Cra:k Propagation

The cycles required for a crack to grow from an initially assumed

flaw to a critical size or to failure were computed by means of fracture

mechanics theory. The computation was performed by a numerical integra-

tion over the flight cycle using the empirically determined relation be-

tween crack growth rate and stress intensity at the crack tip for a given

stress range. Crack propagation lives for the CF6-50 disks were based on

the growth of a semi-elllptlcal surface flaw 0°635 cm (0°250 in.) long by

0.212 _m (0,0833 in.) deep; the ra=ionale for considering such a rela-

tively large flaw slze was that experience has shown that such flaws in

turbine disks have occasionally escaped detection through human error.

Semi-elliptlcal surface flaws were also assumed for crack-inltlation

limited critical regions of the JTgD-17 disks, but w_h crack lengths of

0.0826 cm (0,,0325 _n.) corresponding8 to the crack initiation design crl-

terla used £or the JTgD-17 disk desiBns. In addition, effects of circular
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subsurface flaws in-the bore region and of discontinuities along the web

bond surface of the disk due to misalignment of the two disk halves were

analyzed; a sonically de-ectable diameter of 0.119 cm (0.047 in.) was

assumed for the subsurface flaws. All flaws were oriented so that the

plane of the crack front was normal to the maximum principal stress direc-

tion. Fracture mechanics analyses were performed for the most critical

locations on each standard and design disk.

0verspeed Capability

Burst speeds of the disks were determined from empirical correlations

of spin pit test results with the disk tangential stresses and minimum

ultimate tensile strengths based on average disk temperatures. Overspeed

capability was established by comparing the disk burst speeds to the max-

imum Lakeoff speed of the engine.

All computations were performed for the standard disk, the design

disk, and the standard disk using the same advanced material as the de-

sign disk (henceforth called the "advanced standard disk")_

DISCUSSION OF RESUL%;

Analv_es of CF6-50 Disk Concepts

The results of the preliminary analyses to screen the candidate tur-

bine disk concepts for the CF6-50 engine are summarized in Table II.

The bore entry disk has g_eater burst and low _ycle fatigue capa-

bilit than the standard disk because of the improved transient thermal

response and sizing each disk half to carry the load of the other in case

of lailure. However, the redundant design results in a significantly

heavier disk. If each disk half were sized to have the same stress levels

as the standard disk, there would be an 86 percent increase in disk
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weight, which would increase the S_C about 0.29 percent for an average

flight. Resistance to flaw propagation is substantially improved since

the disk halves are only connected by the webs. The probability of a

flaw propagating through a web in the bore region is only 1 in 5 on the

basis of the ratio of the web width to the bore clrcumfercnce_

The composite disk has lower stress levels and a longer cyclic llfe

for the same weight than the standard disk because of the extra load-

carrying ability of the wire or filament hoops. In order to operate in

the CF6 environment_ the hoop material would have to be able to carry a

stress of about 138 000 N/cm 2 (200 000 psi) at a temperature of 811 K

(1000 ° F) o A survey of fiber materials has found only a few with the re-

quired temperature-stress capability and extensive fabrication develop-

ment would be required to demonstrate that these could be utilized in a

practical design.

The laminated disk exhibits extremely high stresses in the bolts and

around bolt holes in the laminates due to nonuniform load distribution in

the axial direction. High thermal stress grodients through the disk

thickness are also likely to be a problem due to differences in the ther-

mal responses of the inner and outer laminates. Another negative feature

of the laminated design is the excessive weight due to the difficulty of

utilizing the sheet material efficiently.

The llnk disk was found to have very high tensile and bending

stresses and the links could not support the centrifugal loading at the

CF6 operating conditions. This design appears to be unsuitable for tur-

bines in advanced engines although it may be practicable for fan or com-

pressor disks.
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The analysis of the multi-bore disk revealed high transient thermal

stresses at the rib outer diameter rather than the low suresses that had

been expected. The desired benefit of this design in retarding the propa-

gation of rim flaws was, therefore, not fully realized.

The multi-disk design was analyzed for redundancy under various

failure conditions. It was found that the bolts would not be able to

support a failed outer disk. Analysis also indicated that a flawed

center disk would probably reach critical length before a significant

proportion of the load could be redistributed through the bolts to the

undamaged disk members.

The spline disk presents special problems in analysis because the

load distribution among the splines is dependent on the fabrication tol-

erances and it is not apparent how the loading would be redistributed

when a part failed.

As a result of the preliminary analysis, only the bore-entry, com-

posite and spline concepts were considered suitable for CF6 turbine disk

applications. From a strength and life standpolnt, the composite disk is

the most promising concept; however, because of the fabrication problems

involved, this design was not further considered. The bore-entry disk

(henceforth called the "design disk" for the CF6-50 engine) was selected

for further study o_;er the spline disk because its integral construction

8ires more assurance that loading due tn_ failed part would be more

evenly redistributed and because cooling of the spline disk presents more

problems.

The rim and bore temperature responses of the standard and design

disks during the flight cycle are shown in Fig. 5; average effe_'ve

stresses _or various flight times are also indicated. In both disks, the
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maximum rim temperatures occur at the end of takeoff and maximum bore

temperatures occur during climb. Bore temperatures in the design disk

are only slightly cooler than in the standard disk since the bore is

cooled in both disks. Rim temperatures are higher in the design disk

because the coolant picks up heat as it flows radially up the center of

the disk whereas the coolant in the standard disk does not come into

contact with the sides of the disk until it reaches the bolt holes.

Fig. 6 shows the critical locations where manufacturing flaws were

assumed for the standard and design disks. The dovetail post rabbet

which has the limiting low cycle fatigue life was not considered since

failure at this location would not generate high energy fragments. These

critical locations were at the dovetail slot bottom, bolt hole, and bore

for both disks and, in addition, at the web-disk junction near the bore

in the design disk. The calculated number of cycles to crack initiation

for initially unflawed disks and of cycles to failure for initially

flawed disks at the critical locations are summarized in Table Ill.

These results indicate a significant improvement in the low cycle fatigue

lives of the advanced standard and design disks because of the improved

crack initiation characteristics of the advanced material. The initial

FAA approved life for the standard disk is 7800 cycles, which will be

increased subject to the results of three fleet leader engines.

The most critical locations for flaws were at the dovetail slot bot-

tom in the standard disk and at the bore in the advanced standard and de-

sign disks. Although the flawed design disk (wi_h a bore flaw) shows an

improvement of more than 300 percent in cyclic life over the standard

disk (with a flaw at the dovetail slot bottom) in Table III, part of this
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increased life is the result of improved material properties. If the

effect of different materials is removed by comparing the bore-flawed de-

sign disk with the bore-flawed advanced standard disk, the improvement

in life due to the structural concept alone is 136 percent because of the

redundant construction of the design disk. Table ITI also shows that

there is an improvement in the overspeed capability of the design disk of

18 percent over the standard disk and 11 percent over the advanceJ stand-

ard disk.

The life of the standard disk could also be increased by adding to

it the extra 86 percent of weight shown in Table Ill for the design disk.

However, a heavier standard disk would lack the redundancy of the design

disk and would generate even higher fragment energies in the event of

premature disk burst due to the presence of a flaw.

The available kinetic energies for the most likely fragment patterns

from failures originating at the flaw locations are presented in

Table I%, An assumption cf these analyses was that the redundant con-

struction of the design disk would prevent catastrophic failure due to

the propagation of a radial crack from bore to rim; therefore, no kinetic

energy is shown as resulting from bore failures in the design disk. The

maximum energy df fragmentation in the design disk is only 7 percent of

that in the standard and advanced standard disks; this reduction in frag-

ment energy would considerably reduce the containment problem.

Analyses of JTgD-17 Disk Concepts

Fig. 7 shows the rim and bore temperatures with respect to the

flight cycle for the standard and design disks and indicates effective

stresses at various times during the cycle. The maximum temperatures at
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both bore and rim occur at the end of takeoff. Since the coolant is de-

livered by a tangential on-board inJectio= system in this engine and only

the rim of the standard disk is cc_led, the relative thermal responses

for the standard and design disks are different from those for the CF6-50

engine. Fig. 7 shows that bringing the coolant through the bore of the

JT8D-17 design disk results in a significant temperature reduction in the

bore region as compared to the standard disk. Disk stresses are lower

than those shown in Fig. 5 for the CF6-50 dlsk 9 because the JT8D-17 disk

has a lower rim velocity.

The critical locations for manufacturing flaws in the JT8D-17 stand-

ard and design disks are indicated in Fig. 8. Subsurface flaws were

assumed in the standard disk at the bore region and at the maximum radial

stress location in the w_[ and in the design disk at the bore region.

Surface flaws were assumed at the rim cooling air exit hole in the stand-

ard disk and at the bore cooling air entrance in the design disk. i_

addition, a flaw was considered in the design disk at the maximum axial

stres_ location on the bond surface; this flaw would result from forma-

tion of a sharp corner due to a misalignment of the web of the two disk

_.alves during bonding.

Results of the crack initiation, crack propagation, and burst speed

calculations for the standard, advanced standard_ and design disks are

presented in Table V. These results show an improvement in the low cycle

fatigue life of the design disk of 88 percent over the standard disk and

67 percent over the advanced standard disk. The low cycle fatigue llfe

of the standard disk s_own in Table V is the FAA certified life of the

dlsk_
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The crack propagation results in Table V show a reduction in life

for the advanced standard disk as compared to the standard disk. This

reductio_ is due to the fact that the crack propagation rates for forged

Astroloy are greater than those for Waspaloy; there are preliminary indi-

cations that the crack propagation properties of powdered Astroloy may be

superior to those of the forged material. The most critical locations

for crack propagation were at the limiting low-cycle fatigue crack-

initiation sites, i.e., at the cooling air exit holes for the standard

and advanced standard disks and at the cooling air entrance in the design

disk. The improvement in the limiting crack propagation llfe for the

design disk over the standard disk was 124 percent. The fragment ener-

gies shown in Table VI for the JT8D-17 disks show that a reduction of

50 percent in the maximum fragment energies is acLievable wlth the design

disk.

CONCLUDING R_MARKS

A numbel of disk structural designs have been studied as potential

replacements for the existing first-stage turbine disks in the CF6-50 and

JTgD-17 engines° A bore-entry design was selected for the CF6-50 disk as

a result of preliminary analyses of seven design concepts including com-

posite, laminated, link, multi-bore, multi-disk, and spllne designs. The

bore-entry design was designed to improve disk life and prevent high frag-

ment energy failule by utilizing a redundant construction at the expense

of an increase in disk welbLXt. The split-bonded disk concept :elected

for evaluation for the JT8D-17 engine is similar in some respects to the

bore-entry concept, but was designed to improve disk life without redun-

dance or Jncreas= in disk weight. Differences in design philosophy, feb-
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ricatlon procedure, disk cooling, an_ engine operating characteristics

influence the resultant benefits of each design. Cyclic thermal and

stress analyses of these disks revealed that substantial improvements in

low cycle fatigue lives of both unflawed and initially flawed d'sks could

be achieved for both engines by replacing the existing first stage tur-

bine disks with the candidate disk designs.
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Figure 1. - CF6-50first stageturbine diskdesigns.
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